
Previous Article
Varying domains: Stability of the Dirichlet and the Poisson problem
 DCDS Home
 This Issue

Next Article
Preface
Asymptotic profiles of the steady states for an SIS epidemic reactiondiffusion model
1.  Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 794091042, United States 
2.  Department of Zoology, University of Florida, Gainesville, FL 326118525, United States 
3.  Department of Mathematics, The Ohio State State University, Columbus, Ohio 43210 
4.  Mathematical Biosciences Institute, The Ohio State University, Columbus, OH 43210, United States 
[1] 
Roger M. Nisbet, Kurt E. Anderson, Edward McCauley, Mark A. Lewis. Response of equilibrium states to spatial environmental heterogeneity in advective systems. Mathematical Biosciences & Engineering, 2007, 4 (1) : 113. doi: 10.3934/mbe.2007.4.1 
[2] 
YuanHang Su, WanTong Li, FeiYing Yang. Effects of nonlocal dispersal and spatial heterogeneity on total biomass. Discrete & Continuous Dynamical Systems  B, 2019, 24 (9) : 49294936. doi: 10.3934/dcdsb.2019038 
[3] 
Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems  B, 2013, 18 (1) : 3756. doi: 10.3934/dcdsb.2013.18.37 
[4] 
Ovide Arino, Manuel Delgado, Mónica MolinaBecerra. Asymptotic behavior of diseasefree equilibriums of an agestructured predatorprey model with disease in the prey. Discrete & Continuous Dynamical Systems  B, 2004, 4 (3) : 501515. doi: 10.3934/dcdsb.2004.4.501 
[5] 
Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595607. doi: 10.3934/mbe.2007.4.595 
[6] 
Nitu Kumari, Sumit Kumar, Sandeep Sharma, Fateh Singh, Rana Parshad. Basic reproduction number estimation and forecasting of COVID19: A case study of India, Brazil and Peru. Communications on Pure & Applied Analysis, , () : . doi: 10.3934/cpaa.2021170 
[7] 
Tianhui Yang, Ammar Qarariyah, Qigui Yang. The effect of spatial variables on the basic reproduction ratio for a reactiondiffusion epidemic model. Discrete & Continuous Dynamical Systems  B, 2021 doi: 10.3934/dcdsb.2021170 
[8] 
Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 14551474. doi: 10.3934/mbe.2013.10.1455 
[9] 
Renhao Cui. Asymptotic profiles of the endemic equilibrium of a reactiondiffusionadvection SIS epidemic model with saturated incidence rate. Discrete & Continuous Dynamical Systems  B, 2021, 26 (6) : 29973022. doi: 10.3934/dcdsb.2020217 
[10] 
Chengxia Lei, Xinhui Zhou. Concentration phenomenon of the endemic equilibrium of a reactiondiffusionadvection SIS epidemic model with spontaneous infection. Discrete & Continuous Dynamical Systems  B, 2021 doi: 10.3934/dcdsb.2021174 
[11] 
L. Bakker. The KatokSpatzier conjecture, generalized symmetries, and equilibriumfree flows. Communications on Pure & Applied Analysis, 2013, 12 (3) : 11831200. doi: 10.3934/cpaa.2013.12.1183 
[12] 
Wendi Wang. Population dispersal and disease spread. Discrete & Continuous Dynamical Systems  B, 2004, 4 (3) : 797804. doi: 10.3934/dcdsb.2004.4.797 
[13] 
Tianhui Yang, Lei Zhang. Remarks on basic reproduction ratios for periodic abstract functional differential equations. Discrete & Continuous Dynamical Systems  B, 2019, 24 (12) : 67716782. doi: 10.3934/dcdsb.2019166 
[14] 
Alain Chenciner, Jacques Féjoz. The flow of the equalmass spatial 3body problem in the neighborhood of the equilateral relative equilibrium. Discrete & Continuous Dynamical Systems  B, 2008, 10 (2&3, September) : 421438. doi: 10.3934/dcdsb.2008.10.421 
[15] 
Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasiequilibrium problems via freedisposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869887. doi: 10.3934/jimo.2020002 
[16] 
W. E. Fitzgibbon, M.E. Parrott, Glenn Webb. Diffusive epidemic models with spatial and age dependent heterogeneity. Discrete & Continuous Dynamical Systems, 1995, 1 (1) : 3557. doi: 10.3934/dcds.1995.1.35 
[17] 
YuXia Wang, WanTong Li. Combined effects of the spatial heterogeneity and the functional response. Discrete & Continuous Dynamical Systems, 2019, 39 (1) : 1939. doi: 10.3934/dcds.2019002 
[18] 
Xiaoyan Zhang, Yuxiang Zhang. Spatial dynamics of a reactiondiffusion cholera model with spatial heterogeneity. Discrete & Continuous Dynamical Systems  B, 2018, 23 (6) : 26252640. doi: 10.3934/dcdsb.2018124 
[19] 
Hongyu He, Naohiro Kato. Equilibrium submanifold for a biological system. Discrete & Continuous Dynamical Systems  S, 2011, 4 (6) : 14291441. doi: 10.3934/dcdss.2011.4.1429 
[20] 
Alain Chenciner. The angular momentum of a relative equilibrium. Discrete & Continuous Dynamical Systems, 2013, 33 (3) : 10331047. doi: 10.3934/dcds.2013.33.1033 
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]